Moonshine With A Twist Of Geometry

Sean Colin-Ellerin

November 14, 2016
Outline

- What is Moonshine?
Outline

- What is Moonshine?
- Groups and Representations
Outline

▶ What is Moonshine?
▶ Groups and Representations
▶ Modular Forms
Outline

- What is Moonshine?
- Groups and Representations
- Modular Forms
- Monstrous Moonshine
Outline

- What is Moonshine?
- Groups and Representations
- Modular Forms
- Monstrous Moonshine
- K3 Surfaces and Topological Invariants
Outline

- What is Moonshine?
- Groups and Representations
- Modular Forms
- Monstrous Moonshine
- K3 Surfaces and Topological Invariants
- Discriminant Property
What is Moonshine?

- Geometry

Module forms

- String Theory
- Groups
- Algebras

+ Geometry
Groups and Representations

- Group = Symmetries
 - Ex. $D_8 =$ symmetries of square

\[f_1, f_2, f_3, f_4, r_1, r_2, r_3 \]
Groups and Representations

- Group = Symmetries
 - Ex. D_8 = symmetries of square

- Representations give action of group on objects in terms of matrices
Modular Forms

- A torus is given by two vectors (periods) in upper-half plane \mathcal{H}, but one parameter τ

A modular form of weight k is a holomorphic map $f: \mathcal{H} \to \mathbb{C}$ that is the same on equivalent tori (up to prefactor): $f(az + b, cz + d) = (cz + d)^k f(z)$ where $(a b; c d) \in SL_2(\mathbb{Z})$.

Important in string theory because tori are good candidates for string compactifications, modular forms can be expanded in Laurent series $f(z) = \sum_{n=0}^{\infty} a_n q^n = e^{2\pi iz}$, which is the partition function.
Modular Forms

- A torus is given by two vectors (periods) in upper-half plane \mathcal{H}, but one parameter τ
- Remains untwisted if we act with $SL_2(\mathbb{Z}) = \{ (a \ b) \mid ad - bc \neq 0 \}$ by $z \mapsto \frac{az+b}{cz+d}$

- Modular form of weight k is holomorphic map $f : \mathcal{H} \to \mathbb{C}$ that is the same on equivalent tori (up to prefactor): $f(az+b/cz+d) = (cz+d)^kf(z) (a \ b \ c \ d) \in SL_2(\mathbb{Z})$

- Important in string theory because tori are good candidates for string compactifications, modular forms can be expanded in Laurent series $f(z) = \sum_{n=0}^{\infty} a_n q^n = e^{2\pi i z}$, which is partition function
Modular Forms

- A **torus** is given by two vectors (periods) in upper-half plane \(\mathcal{H} \), but one parameter \(\tau \)

- Remains untwisted if we act with
 \[SL_2(\mathbb{Z}) = \{ (a \ b) \mid a \ d - b \ c \neq 0 \} \text{ by } z \mapsto \frac{az+b}{cz+d} \]

- Modular form of weight \(k \) is holomorphic map \(f : \mathbb{H} \to \mathbb{C} \) that is the same on equivalent tori (up to prefactor):
 \[f \left(\frac{az+b}{cz+d} \right) = (cz+d)^k f(z) \quad (a \ b \ c \ d) \in SL_2(\mathbb{Z}) \]
Modular Forms

- A **torus** is given by two vectors (periods) in upper-half plane \mathcal{H}, but one parameter τ

- Remains untwisted if we act with $SL_2(\mathbb{Z}) = \{ (\begin{array}{cc} a & b \\ c & d \end{array}) | ad - bc \neq 0 \}$ by $z \mapsto \frac{az+b}{cz+d}$

- Modular form of weight k is holomorphic map $f : \mathbb{H} \to \mathbb{C}$ that is the same on equivalent tori (up to prefactor):

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z) \quad (\begin{array}{cc} a & b \\ c & d \end{array}) \in SL_2(\mathbb{Z})$$

- Important in string theory because tori are good candidates for string compactifications, modular forms can be expanded in Laurent series

$$f(z) = \sum_{n=0}^{\infty} a_n q^n \quad q = e^{2\pi i z},$$

which is partition function
Monstrous Moonshine

- Special modular function of weight 0 called \(j \)-function:

\[
j(z) = q^{-1} + 744 + 196884q + 21493760q^2 + \ldots
\]

gives change of coordinates on sphere
Monstrous Moonshine

- Special modular function of weight 0 called j-function:

\[
j(z) = q^{-1} + 744 + 196884q + 21493760q^2 + \ldots
\]

... gives change of coordinates on sphere

- Character table of Monster group \mathbb{M}

<table>
<thead>
<tr>
<th>\mathbb{M}</th>
<th>1A</th>
<th>2A</th>
<th>2B</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>4A</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>M_2</td>
<td>196883</td>
<td>4371</td>
<td>275</td>
<td>782</td>
<td>53</td>
<td>-1</td>
<td>275</td>
<td>...</td>
</tr>
<tr>
<td>M_3</td>
<td>21296876</td>
<td>91884</td>
<td>-2324</td>
<td>7889</td>
<td>-130</td>
<td>248</td>
<td>1772</td>
<td>...</td>
</tr>
<tr>
<td>M_4</td>
<td>842609326</td>
<td>1139374</td>
<td>12974</td>
<td>55912</td>
<td>-221</td>
<td>-248</td>
<td>8878</td>
<td>...</td>
</tr>
</tbody>
</table>

1 + 196883 = 196884
1 + 196883 + 21296876 = 21493760
Monstrous Moonshine

- Special modular function of weight 0 called \(j \)-function:

\[
j(z) = q^{-1} + 744 + 196884q + 21493760q^2 + \ldots
\]

gives change of coordinates on sphere

- Character table of Monster group \(\mathbb{M} \)

<table>
<thead>
<tr>
<th>(\mathbb{M})</th>
<th>1A</th>
<th>2A</th>
<th>2B</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>4A</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 \ldots</td>
</tr>
<tr>
<td>(M_2)</td>
<td>196883</td>
<td>4371</td>
<td>275</td>
<td>782</td>
<td>53</td>
<td>-1</td>
<td>275</td>
<td>\ldots</td>
</tr>
<tr>
<td>(M_3)</td>
<td>21296876</td>
<td>91884</td>
<td>-2324</td>
<td>7889</td>
<td>-130</td>
<td>248</td>
<td>1772</td>
<td>\ldots</td>
</tr>
<tr>
<td>(M_4)</td>
<td>842609326</td>
<td>1139374</td>
<td>12974</td>
<td>55912</td>
<td>-221</td>
<td>-248</td>
<td>8878</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

\(1 + 196883 = 196884 \)

\(1 + 196883 + 21296876 = 21493760 \)

- 1978: McKay noticed this and sent it to Thompson and he was astounded, called it Moonshine
Explanation

- McKay and Thompson hypothesized a function for each conjugacy class $T_g(z)$
McKay and Thompson hypothesized a function for each conjugacy class $T_g(z)$

1988: Harvey et. al in “Beauty and the Beast” showed that a 24-dimensional bosonic torus model has partition function $j(z) - 720$ and symmetry group \mathbb{M}, where each T_g corresponds to different boundary conditions.
McKay and Thompson hypothesized a function for each conjugacy class $T_g(z)$.

1988: Harvey et. al in “Beauty and the Beast” showed that a 24-dimensional bosonic torus model has partition function $j(z) - 720$ and symmetry group \mathbb{M}, where each T_g corresponds to different boundary conditions.

1992: Borcherds, using results from string theory, shows each T_g is a change of coordinates on sphere (with finite number of points removed) and modular for $G_g < SL_2(\mathbb{R})$.

Prize question: Does there exist Monster space (manifold)? Professor Harvey and I are looking at candidate M_{80} from physics perspective.

Now there are many types of Moonshine: Umbral, Thompson, Conway, Rudvalis, Baby Monster, Mathieu,... all different!
Explanation

- McKay and Thompson hypothesized a function for each conjugacy class $T_g(z)$
- 1988: Harvey et al in “Beauty and the Beast” showed that a 24-dimensional bosonic torus model has partition function $j(z) - 720$ and symmetry group \mathbb{M}, where each T_g corresponds to different boundary conditions.
- 1992: Borcherds, using results from string theory, shows each T_g is a change of coordinates on sphere (with finite number of points removed) and modular for $G_g < SL_2(\mathbb{R})$
- Prize question: Does there exist Monster space (manifold)? Professor Harvey and I are looking at candidate M_0^8 from physics perspective.
McKay and Thompson hypothesized a function for each conjugacy class $T_g(z)$.

1988: Harvey et. al in “Beauty and the Beast” showed that a 24-dimensional bosonic torus model has partition function $j(z) - 720$ and symmetry group \mathbb{M}, where each T_g corresponds to different boundary conditions.

1992: Borcherds, using results from string theory, shows each T_g is a change of coordinates on sphere (with finite number of points removed) and modular for $G_g < SL_2(\mathbb{R})$.

Prize question: Does there exist Monster space (manifold)? Professor Harvey and I are looking at candidate M_0^8 from physics perspective.

Now there are many types of Moonshine: Umbral, Thompson, Conway, Rudvalis, Baby Monster, Mathieu,...all different!
K3 Surfaces & Topological Invariants

- String theory: $26D \to 11D \to 10D$, but we only see 4-dimensions so we have $\mathbb{R}^{3,1} \times M$, where M is Calabi-Yau manifold
K3 Surfaces & Topological Invariants

- String theory: $26D \rightarrow 11D \rightarrow 10D$, but we only see 4-dimensions so we have $\mathbb{R}^{3,1} \times M$, where M is Calabi-Yau manifold

- Two types of 4-dimensional Calabi-Yau, one is K3 surface
 - Consider a 4-dimensional torus \mathbb{T}^4 and identify $x \sim -x$ to get $M = \mathbb{T}^4/\mathbb{Z}_2$

- 2010: Eguchi, Ooguri, Tachikawa notice $A(n)$ is dimension of nth irreducible representation of M_{24}

- Gannon showed true for all n and for $A_g(n)$, where we twist states by action of $g \in M_{24}$, but it has been shown no K3 theory has M_{24} symmetry!
K3 Surfaces & Topological Invariants

- String theory: $26D \rightarrow 11D \rightarrow 10D$, but we only see 4-dimensions so we have $\mathbb{R}^{3,1} \times M$, where M is Calabi-Yau manifold

- Two types of 4-dimensional Calabi-Yau, one is K3 surface
 - Consider a 4-dimensional torus T^4 and identify $x \sim -x$ to get $M = T^4/\mathbb{Z}_2$

- Invariant of all models on K3 surfaces called elliptic genus Z_{K3}, which counts certain types of states of any model on a K3 surface
K3 Surfaces & Topological Invariants

▶ String theory: $26D \rightarrow 11D \rightarrow 10D$, but we only see 4-dimensions so we have $\mathbb{R}^{3,1} \times M$, where M is Calabi-Yau manifold

▶ Two types of 4-dimensional Calabi-Yau, one is K3 surface
 - Consider a 4-dimensional torus T^4 and identify $x \sim -x$ to get $M = T^4/\mathbb{Z}_2$

▶ Invariant of all models on K3 surfaces called elliptic genus Z_{K3}, which counts certain types of states of any model on a K3 surface

▶ Decompose into massless and massive parts
 $$Z_{K3}(\tau, z) = 20 \text{ch}_{h = \frac{1}{4}, l = 0}(\tau, z) - 2 \text{ch}_{h = \frac{1}{4}, l = \frac{1}{2}}(\tau, z) + \sum_{n=1}^{\infty} A(n) \text{ch}_{h = n + \frac{1}{4}, l = \frac{1}{2}}(\tau, z)$$
String theory: $26D \rightarrow 11D \rightarrow 10D$, but we only see 4-dimensions so we have $\mathbb{R}^{3,1} \times M$, where M is Calabi-Yau manifold

Two types of 4-dimensional Calabi-Yau, one is K3 surface

Consider a 4-dimensional torus \mathbb{T}^4 and identify $x \sim -x$ to get

$M = \mathbb{T}^4/\mathbb{Z}_2$

Invariant of all models on K3 surfaces called elliptic genus Z_{K3}, which counts certain types of states of any model on a K3 surface

Decompose into massless and massive parts

\[
Z_{K3}(\tau, z) = 20 \text{ch}_{h=\frac{1}{4}, l=0}(\tau, z) - 2 \text{ch}_{h=\frac{1}{4}, l=\frac{1}{2}}(\tau, z) + \sum_{n=1}^{\infty} A(n) \text{ch}_{h=n+\frac{1}{4}, l=\frac{1}{2}}(\tau, z)
\]

2010: Eguchi, Ooguri, Tachikawa notice $A(n)$ is dimension of nth irreducible representation of $M_{24} < \mathbb{M}$
K3 Surfaces & Topological Invariants

- String theory: $26D \rightarrow 11D \rightarrow 10D$, but we only see 4-dimensions so we have $\mathbb{R}^{3,1} \times M$, where M is Calabi-Yau manifold

- Two types of 4-dimensional Calabi-Yau, one is K3 surface
 - Consider a 4-dimensional torus \mathbb{T}^4 and identify $x \sim -x$ to get $M = \mathbb{T}^4 / \mathbb{Z}_2$

- Invariant of all models on K3 surfaces called elliptic genus Z_{K3}, which counts certain types of states of any model on a K3 surface

- Decompose into massless and massive parts
 $$Z_{K3}(\tau, z) = 20 \text{ch}_{h=\frac{1}{4}, l=0}^{\bar{R}}(\tau, z) - 2 \text{ch}_{h=\frac{1}{4}, l=\frac{1}{2}}^{\bar{R}}(\tau, z) + \sum_{n=1}^{\infty} A(n) \text{ch}_{h=n+\frac{1}{4}, l=\frac{1}{2}}^{\bar{R}}(\tau, z)$$

- 2010: Eguchi, Ooguri, Tachikawa notice $A(n)$ is dimension of nth irreducible representation of $M_{24} < \bar{M}$

- Gannon showed true for all n and for $A_g(n)$, where we twist states by action of $g \in M_{24}$, but it has been shown no K3 theory has M_{24} symmetry!
Discriminant Property

Expand massive part of Z_{K3}

$$\sum_{n=1}^{\infty} A(n) \operatorname{ch}_{h=n+\frac{1}{4}, l=\frac{1}{2}}(\tau, z) = 2 \frac{\theta_1(\tau, z)}{\eta^3(\tau)} (-q^{-1/8} + 45q^{7/8} + 231q^{15/8} + \ldots)$$

Conjecture: The corresponding representation given whose dimension is coefficient of $q^D/8$ contains at least one pair of such ρ_n, $\rho^* n$.

Physically, this says that the energy of states tells us in which representations they transform.

Checked to very high order and for 6 different types of Moonshine—want to find some underlying physical explanation of why this is true.
Discriminant Property

- Expand massive part of Z_{K3}
 \[
 \sum_{n=1}^{\infty} A(n) \text{ch}_{h=n+\frac{1}{4}, l=\frac{1}{2}}(\tau, z) = 2 \frac{\theta_1(\tau, z)}{\eta^3(\tau)} (-q^{-1/8} + 45q^{7/8} + 231q^{15/8} + \ldots)
 \]

- Look at exponent $D/8$; if $D = n\lambda^2$ with n and λ coprime, then there exists representation ρ and $g \in M_{24}$ such that
 \[
 \rho_n(g), \rho_n^*(g) \in \mathbb{Q}[\sqrt{-n}] = \{a + b\sqrt{-n} \mid a, b \in \mathbb{Q}\}
 \]

- Physically, this says that the energy of states tells us in which representations they transform

- Checked to very high order and for 6 different types of Moonshine—want to find some underlying physical explanation of why this is true
Discriminant Property

- Expand massive part of Z_{K3}
 \[\sum_{n=1}^{\infty} A(n) \text{ch}_{h=n+\frac{1}{4}, l=\frac{1}{2}}(\tau, z) = 2 \frac{\theta_1(\tau,z)}{\eta^3(\tau)} (-q^{-1/8} + 45q^{7/8} + 231q^{15/8} + \ldots) \]

- Look at exponent $D/8$; if $D = n\lambda^2$ with n and λ coprime, then there exists representation ρ and $g \in M_{24}$ such that
 \[\rho_n(g), \rho_n^*(g) \in \mathbb{Q}[\sqrt{-n}] = \{ a + b\sqrt{-n} | a, b \in \mathbb{Q} \} \]

- Conjecture: The corresponding representation given whose dimension is coefficient of $q^{D/8}$ contains at least one pair of such ρ_n, ρ_n^*

- Physically, this says that the energy of states tells us in which representations they transform

- Checked to very high order and for 6 different types of Moonshine—want to find some underlying physical explanation of why this is true
Discriminant Property

- Expand massive part of Z_{K3}
 \[
 \sum_{n=1}^{\infty} A(n) \text{ch}_{h=n+\frac{1}{4}, l=\frac{1}{2}}(\tau, z) = 2 \frac{\theta_1(\tau, z)}{\eta^3(\tau)} (-q^{-1/8} + 45q^{7/8} + 231q^{15/8} + \ldots)
 \]

- Look at exponent $D/8$; if $D = n\lambda^2$ with n and λ coprime, then there exists representation ρ and $g \in M_{24}$ such that
 \[
 \rho_n(g), \rho_n^*(g) \in \mathbb{Q}[\sqrt{-n}] = \{a + b\sqrt{-n} \mid a, b \in \mathbb{Q}\}
 \]

- Conjecture: The corresponding representation given whose dimension is coefficient of $q^{D/8}$ contains at least one pair of such ρ_n, ρ_n^*

- Physically, this says that the energy of states tells us in which representations they transform

- Checked to very high order and for 6 different types of Moonshine—want to find some underlying physical explanation of why this is true